Retroperitoneal fibrosis
from bedside to bench

Augusto Vaglio, MD PhD
UO Nefrologia,
Azienda Ospedaliero-Universitaria di Parma
augusto.vaglio@virgilio.it
THE CONCEPT OF FIBRO-INFLAMMATORY DISEASES

- Tumour-like, fibro-inflammatory lesions (fibrosis develops together with inflammation)
- Inflammation is usually "chronic"
- Organ damage due to inflammation and fibrosis
- Organ damage due to compressive effects of newly formed fibro-inflammatory masses
- Fibrosis in fibro-inflammatory diseases has the potential to regress after appropriate treatment
<table>
<thead>
<tr>
<th>Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sclerosing pancreatitis</td>
</tr>
<tr>
<td>Sclerosing cholangitis</td>
</tr>
<tr>
<td>Sclerosing mesenteritis</td>
</tr>
<tr>
<td>Retroperitoneal fibrosis/chronic periaortitis</td>
</tr>
<tr>
<td>Riedel’s and fibrosing Hashimoto’s thyroiditis</td>
</tr>
<tr>
<td>Aortitis</td>
</tr>
<tr>
<td>Mikulicz’s disease</td>
</tr>
<tr>
<td>Inflammatory pseudotumour</td>
</tr>
<tr>
<td>Fibrosing mediastinitis</td>
</tr>
</tbody>
</table>

IDIOPATHIC
Sclerosing pancreatitis
Sclerosing cholangitis
Sclerosing mesenteritis
Retroperitoneal fibrosis/chronic periaortitis
Riedel’s and fibrosing Hashimoto’s thyroiditis
Aortitis
Mikulicz’s disease
Inflammatory pseudotumour
Fibrosing mediastinitis

IgG4-RELATED

Sclerosing pancreatitis
Sclerosing cholangitis
Sclerosing mesenteritis
Retroperitoneal fibrosis/chronic periaortitis
Riedel’s and fibrosing Hashimoto’s thyroiditis
Aortitis
Mikulicz’s disease
Inflammatory pseudotumour
Fibrosing mediastinitis

IDIOPATHIC

IDIOPATHIC
<table>
<thead>
<tr>
<th>IDIOPATHIC</th>
<th>IgG4-RELATED</th>
<th>SECONDARY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sclerosing pancreatitis</td>
<td>Drug-related (methysergide, ergot-derivatives, pergolide)</td>
<td></td>
</tr>
<tr>
<td>Sclerosing cholangitis</td>
<td>Gadolinium-induced fibrosis</td>
<td></td>
</tr>
<tr>
<td>Sclerosing mesenteritis</td>
<td>Infectious (TB, actinomycosis, histoplasmosis)</td>
<td></td>
</tr>
<tr>
<td>Retroperitoneal fibrosis/chronic periaortitis</td>
<td>Malignancies (lymphomas, sarcomas, solid tumours, inflammatory myofibroblastic tumour)</td>
<td></td>
</tr>
<tr>
<td>Riedel’s and fibrosing Hashimoto’s thyroiditis</td>
<td>Erdheim-Chester disease</td>
<td></td>
</tr>
<tr>
<td>Aortitis</td>
<td>Other (trauma, Rx-therapy)</td>
<td></td>
</tr>
<tr>
<td>Mikulicz’s disease</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inflammatory pseudotumour</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fibrosing mediastinitis</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
FROM RETROPERITONEAL FIBROSIS TO CHRONIC PERIAORTITIS
THE SPECTRUM OF CHRONIC PERIAORTITIS

Clinical presentation
<table>
<thead>
<tr>
<th></th>
<th>Mayo Clinic, Rochester (n=185)</th>
<th>Johns Hopkins University, Baltimore (n=48)</th>
<th>A. Schweitzer Hospital, Dordrecht (n=53)</th>
<th>University Hospital, Parma (n=210)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean age at diagnosis, years</td>
<td>58</td>
<td>54</td>
<td>64</td>
<td>58</td>
</tr>
<tr>
<td>Male gender, %</td>
<td>61</td>
<td>54</td>
<td>77</td>
<td>70</td>
</tr>
<tr>
<td>Systemic symptoms, %</td>
<td>27</td>
<td>60</td>
<td>92</td>
<td>66</td>
</tr>
<tr>
<td>Pain (flank, abdominal), %</td>
<td>38</td>
<td>94</td>
<td>92</td>
<td>81</td>
</tr>
<tr>
<td>Testicular manifestations</td>
<td>13</td>
<td>27</td>
<td>46</td>
<td>51</td>
</tr>
<tr>
<td>(pain, varicoce, hydrocele), %</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Constipation, %</td>
<td>12</td>
<td>NA</td>
<td>30</td>
<td>28</td>
</tr>
<tr>
<td>Lower extremity edema, %</td>
<td>13</td>
<td>23</td>
<td>8</td>
<td>15</td>
</tr>
<tr>
<td>Lower extremity claudication, %</td>
<td></td>
<td></td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>Hydronephrosis, %</td>
<td>57</td>
<td>67</td>
<td>55</td>
<td>72</td>
</tr>
<tr>
<td>Unilateral, %</td>
<td>25</td>
<td>21</td>
<td>40</td>
<td>29</td>
</tr>
<tr>
<td>Bilateral, %</td>
<td>32</td>
<td>46</td>
<td>15</td>
<td>43</td>
</tr>
<tr>
<td>Renal atrophy, %</td>
<td>8</td>
<td>NA</td>
<td>21</td>
<td>30</td>
</tr>
<tr>
<td>Impaired renal function, %</td>
<td>42</td>
<td>NA</td>
<td>66</td>
<td>57</td>
</tr>
<tr>
<td>Mean ESR, mm/h</td>
<td>32</td>
<td>40</td>
<td>45</td>
<td>63</td>
</tr>
<tr>
<td>Mean CRP, mg/L</td>
<td>20.7</td>
<td>NA</td>
<td>23</td>
<td>32</td>
</tr>
<tr>
<td>Mean serum creatinine, mg/dL</td>
<td>1.3</td>
<td>NA</td>
<td>1.4</td>
<td>3.9c</td>
</tr>
<tr>
<td>Mean Hb, g/dL</td>
<td>12.6</td>
<td>11.6</td>
<td>12.4</td>
<td>12.5</td>
</tr>
<tr>
<td>Increased ESR, %</td>
<td>53</td>
<td>NA</td>
<td>74</td>
<td>85</td>
</tr>
<tr>
<td>Increased CRP, %</td>
<td>47</td>
<td>NA</td>
<td>62</td>
<td>78</td>
</tr>
</tbody>
</table>

CLINICAL MANIFESTATIONS

<table>
<thead>
<tr>
<th></th>
<th>Mayo Clinic, Rochester (n=185)</th>
<th>Johns Hopkins University, Baltimore (n=48)</th>
<th>A. Schweitzer Hospital, Dordrecht (n=53)</th>
<th>University Hospital, Parma (n=210)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean age at diagnosis, years</td>
<td>58</td>
<td>54</td>
<td>64</td>
<td>58</td>
</tr>
<tr>
<td>Male gender, %</td>
<td>61</td>
<td>54</td>
<td>77</td>
<td>70</td>
</tr>
<tr>
<td>Systemic symptoms, %a</td>
<td>27</td>
<td>60</td>
<td>92</td>
<td>66</td>
</tr>
<tr>
<td>Pain (flank, abdominal), %</td>
<td>38</td>
<td>94</td>
<td>92</td>
<td>81</td>
</tr>
<tr>
<td>Testicular manifestations (pain, varicocele, hydrocele), %</td>
<td>13</td>
<td>27</td>
<td>46</td>
<td>51</td>
</tr>
<tr>
<td>Constipation, %</td>
<td>12</td>
<td>NA</td>
<td>30</td>
<td>28</td>
</tr>
<tr>
<td>Lower extremity edema, %</td>
<td>13</td>
<td>23</td>
<td>8</td>
<td>15</td>
</tr>
<tr>
<td>Lower extremity claudication, %</td>
<td>2</td>
<td>NA</td>
<td>11</td>
<td>12</td>
</tr>
<tr>
<td>Hydronephrosis, %</td>
<td>57</td>
<td>67</td>
<td>55</td>
<td>72</td>
</tr>
<tr>
<td>Unilateral, %</td>
<td>25</td>
<td>21</td>
<td>40</td>
<td>29</td>
</tr>
<tr>
<td>Bilateral, %</td>
<td>32</td>
<td>46</td>
<td>15</td>
<td>43</td>
</tr>
<tr>
<td>Renal atrophy, %</td>
<td>8</td>
<td>NA</td>
<td>21</td>
<td>30</td>
</tr>
<tr>
<td>Impaired renal function, %b</td>
<td>42</td>
<td>NA</td>
<td>66</td>
<td>57</td>
</tr>
<tr>
<td>Mean ESR, mm/h</td>
<td>32</td>
<td>40</td>
<td>45</td>
<td>63</td>
</tr>
<tr>
<td>Mean CRP, mg/L</td>
<td>20.7</td>
<td>NA</td>
<td>23</td>
<td>32</td>
</tr>
<tr>
<td>Mean serum creatinine, mg/dL</td>
<td>1.3</td>
<td>NA</td>
<td>1.4</td>
<td>3.9c</td>
</tr>
<tr>
<td>Mean Hb, g/dL</td>
<td>12.6</td>
<td>11.6</td>
<td>12.4</td>
<td>12.5</td>
</tr>
<tr>
<td>Increased ESR, %</td>
<td>53</td>
<td>NA</td>
<td>74</td>
<td>85</td>
</tr>
<tr>
<td>Increased CRP, %</td>
<td>47</td>
<td>NA</td>
<td>62</td>
<td>78</td>
</tr>
</tbody>
</table>

CLINICAL MANIFESTATIONS

<table>
<thead>
<tr>
<th></th>
<th>Mayo Clinic, Rochester (n=185)⁴</th>
<th>Johns Hopkins University, Baltimore (n=48)¹⁹</th>
<th>A. Schweitzer Hospital, Dordrecht (n=53)²</th>
<th>University Hospital, Parma (n=210)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean age at diagnosis, years</td>
<td>58</td>
<td>54</td>
<td>64</td>
<td>58</td>
</tr>
<tr>
<td>Male gender, %</td>
<td>61</td>
<td>54</td>
<td>77</td>
<td>70</td>
</tr>
<tr>
<td>Systemic symptoms, %⁵</td>
<td>27</td>
<td>60</td>
<td>92</td>
<td>66</td>
</tr>
<tr>
<td>Pain (flank, abdominal), %</td>
<td>38</td>
<td>94</td>
<td>92</td>
<td>81</td>
</tr>
<tr>
<td>Testicular manifestations (pain, varicocele, hydrocele), %</td>
<td>13</td>
<td>27</td>
<td>46</td>
<td>51</td>
</tr>
<tr>
<td>Constipation, %</td>
<td>12</td>
<td>NA</td>
<td>30</td>
<td>28</td>
</tr>
<tr>
<td>Lower extremity edema, %</td>
<td>13</td>
<td>23</td>
<td>8</td>
<td>15</td>
</tr>
<tr>
<td>Lower extremity claudication, %</td>
<td>2</td>
<td>NA</td>
<td>11</td>
<td>12</td>
</tr>
<tr>
<td>Hydronephrosis, %</td>
<td>57</td>
<td>67</td>
<td>55</td>
<td>72</td>
</tr>
<tr>
<td>Unilateral, %</td>
<td>25</td>
<td>21</td>
<td>40</td>
<td>29</td>
</tr>
<tr>
<td>Bilateral, %</td>
<td>32</td>
<td>46</td>
<td>15</td>
<td>43</td>
</tr>
<tr>
<td>Renal atrophy, %</td>
<td>8</td>
<td>NA</td>
<td>21</td>
<td>30</td>
</tr>
<tr>
<td>Impaired renal function, %b</td>
<td>42</td>
<td>NA</td>
<td>66</td>
<td>57</td>
</tr>
<tr>
<td>Mean ESR, mm/h</td>
<td>32</td>
<td>40</td>
<td>45</td>
<td>63</td>
</tr>
<tr>
<td>Mean CRP, mg/L</td>
<td>20.7</td>
<td>NA</td>
<td>23</td>
<td>32</td>
</tr>
<tr>
<td>Mean serum creatinine, mg/dL</td>
<td>1.3</td>
<td>NA</td>
<td>1.4</td>
<td>3.9c</td>
</tr>
<tr>
<td>Mean Hb, g/dL</td>
<td>12.6</td>
<td>11.6</td>
<td>12.4</td>
<td>12.5</td>
</tr>
<tr>
<td>Increased ESR, %</td>
<td>53</td>
<td>NA</td>
<td>74</td>
<td>85</td>
</tr>
<tr>
<td>Increased CRP, %</td>
<td>47</td>
<td>NA</td>
<td>62</td>
<td>78</td>
</tr>
</tbody>
</table>

Disease associations
ASSOCIATION WITH SYSTEMIC AUTOIMMUNE DISEASES

Panel 2: Main associations between retroperitoneal fibrosis and autoimmune or inflammatory diseases

Autoimmune thyroid disease
- Hashimoto’s thyroiditis^{11,12}
- Riedel’s thyroiditis^{52,54-56}
- Graves’ disease^{66}

Small and medium-sized vessel vasculitis
- Wegener’s granulomatosis^{37,50}
- Polyarteritis nodosa^{91}
- Microscopic polyangitis^{60}
- Hepatitis C virus-related cryoglobulinaemia^{69}
- Ankylosing spondylitis^{70,71}

Systemic lupus erythematosus^{14,50,65}

Rheumatoid arthritis^{11,14,72}

Glomerulonephritis
- ANCA-positive rapidly progressive glomerulonephritis^{11,50}
- Membranous nephropathy^{73}

Sclerosing cholangitis^{64,75}

Primary biliary cirrhosis^{26,27}

Sclerosing pancreatitis^{30,28}

Uveitis^{79}

ANCA: anti-neutrophil cytoplasmic antibodies.

ASSOCIATION WITH ORGAN-SPECIFIC AUTOIMMUNE DISEASES

<table>
<thead>
<tr>
<th></th>
<th>CP patients (n=73)</th>
<th>Controls (n=71)</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years)</td>
<td>55.4 (10.6)</td>
<td>55.0 (9.6)</td>
<td>0.85</td>
</tr>
<tr>
<td>Male n (%)</td>
<td>46 (63)</td>
<td>41 (58)</td>
<td>0.52</td>
</tr>
<tr>
<td>TSH mIU/L</td>
<td>1.23 (0.79-1.70)</td>
<td>1.50 (1.07-2.59)</td>
<td>0.86</td>
</tr>
<tr>
<td>FT4 ng/dL</td>
<td>1.22 (0.20)</td>
<td>0.93 (0.18)</td>
<td><.0001</td>
</tr>
<tr>
<td>AbTPO positivity n (%)</td>
<td>18 (24.7)</td>
<td>7 (10.6)</td>
<td>0.03</td>
</tr>
<tr>
<td>AbTg positivity n (%)</td>
<td>12 (16.4)</td>
<td>5 (7.0)</td>
<td>0.11</td>
</tr>
<tr>
<td>Ultrasonographic evidence of HT n(%)</td>
<td>50 (69.4)</td>
<td>23 (32.4)</td>
<td><.0001</td>
</tr>
<tr>
<td>Thyroid volume (mL)</td>
<td>11.42 (5.31)</td>
<td>10.00 (4.43)</td>
<td>0.12</td>
</tr>
<tr>
<td>Thyroid nodules n (%)</td>
<td>18 (25.3)</td>
<td>24 (33.8)</td>
<td>0.27</td>
</tr>
<tr>
<td>Thyroid nodules diameter (mm)</td>
<td>14 (8-15)</td>
<td>10 (8-15)</td>
<td>0.77</td>
</tr>
<tr>
<td>Body Mass Index (kg/m2)</td>
<td>26.90 (3.71)</td>
<td>27.44 (2.70)</td>
<td>0.38</td>
</tr>
<tr>
<td>Smoking (pack-years)</td>
<td>34.20 (26.20)</td>
<td>8.84 (10.32)</td>
<td><.0001</td>
</tr>
<tr>
<td>CIRS score</td>
<td>3 (2-5)</td>
<td>0 (0-1)</td>
<td><.0001</td>
</tr>
</tbody>
</table>

“DIFFUSE” (THORACO-ABDOMINAL) PERIAORTITIS

77 patients with chronic periaortitis (CP)

28 CP patients with thoracic vessel disease

7 (25%) thoracic aortic aneurysm

6 (21%) thoracic aortic aneurysm plus periaortitis

15 (54%) thoracic periaortitis

2 (7%) with epiaortic vessel involvement

4 (14%) without epiaortic vessel involvement

7 (25%) with epiaortic vessel involvement

8 (29%) without epiaortic vessel involvement

"DIFFUSE" (THORACO-ABDOMINAL) PERIAORTITIS
ASSOCIATION WITH OTHER FIBRO-INFLAMMATORY DISORDERS

IDIOPATHIC MEDIASTINAL FIBROSIS: 3 out of 9 cases in our series were associated with CP

ASSOCIATION WITH IgG4-RELATED (SYSTEMIC) DISEASE

Kuttner’s tumour of the parotid gland

Tubulo-interstitial nephritis

RPF

Sclerosing pancreatitis

IgG4-RELATED DISEASE

1. Typical organ involvement (often tumour-like)
2. IgG4 >135 mg/dL
3. Tissue IgG4+ plasma cells >40% of IgG+ plasma cells and >10/hpf

Umehara H, Mod Rheumatol 2012; Corradi D, Cardiovasc Pathol 2016
SERUM IgG4 in CHRONIC PERIAORTITIS

Vaglio A, unpublished
IgG4-RELATED vs -UNRELATED CP

<table>
<thead>
<tr>
<th></th>
<th>No. pts</th>
<th>IgG4+ cases, n(%)</th>
<th>Criteria to differentiate IgG4+ vs IgG4- CP</th>
<th>Main findings (in the IgG4+ subset)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Castelein T, 2015</td>
<td>17</td>
<td>9 (53)</td>
<td>Serum IgG4 level</td>
<td>Multifocal involvement, male predominance</td>
</tr>
<tr>
<td>Kasashima S, 2008</td>
<td>23</td>
<td>13 (56)</td>
<td>Histology and IHC</td>
<td>Higher incidence of autoimmune diseases</td>
</tr>
<tr>
<td>Khosroshahi A, 2013</td>
<td>23</td>
<td>13 (56)</td>
<td>Histology and IHC</td>
<td>Multifocal involvement</td>
</tr>
<tr>
<td>Koo B, 2014</td>
<td>19</td>
<td>9 (47)</td>
<td>Histology and IHC</td>
<td>Higher relapse rate</td>
</tr>
<tr>
<td>Yamashita M, 2008</td>
<td>15</td>
<td>6 (30)</td>
<td>Histology and IHC</td>
<td>Multifocal involvement</td>
</tr>
<tr>
<td>Zen Y, 2009</td>
<td>17</td>
<td>10 (59)</td>
<td>Histology and IHC</td>
<td>Multifocal involvement, male predominance</td>
</tr>
</tbody>
</table>

Chronic Periaortitis

IgG4-unrelated

IgG4-related

Immunopathogenetic model
IMMUNOPATHOGENESIS OF CHRONIC PERIAORTITIS

Environmental factors (asbestos, smoking)

(Auto-)antigen (?)

Aortic lumen

Aortic wall

Retroperitoneum

APC

CD4+ T cell

TCR
PATHOGENESIS: GENETIC ASSOCIATIONS

- **HLA DRB1*03**
- CCR5 delta 32
- CCL11 haplotype
- FcGR2A

In collaboration with Ana Marquez & Javier Martin

PATHOGENESIS: ASBESTOS AND SMOKING

<table>
<thead>
<tr>
<th>Exposure</th>
<th>Participants, n</th>
<th>OR (95% CI)</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Control Group</td>
<td>Case</td>
<td></td>
</tr>
<tr>
<td>Smoking</td>
<td>153</td>
<td>49</td>
<td>3.15 (1.40–8.11)</td>
</tr>
<tr>
<td>Asbestos</td>
<td>8</td>
<td>4</td>
<td>4.91 (0.78–28.02)</td>
</tr>
<tr>
<td>Smoking and asbestos</td>
<td>23</td>
<td>27</td>
<td>12.04 (4.32–38.28)</td>
</tr>
</tbody>
</table>

Graph:*

[Graph showing OR (95% CI) for smoking, asbestos, and smoking and asbestos]

IMMUNOPATHOGENESIS OF CHRONIC PERIAORTITIS

- Environmental factors (asbestos, smoking)
- (Auto-)antigen (?)

HLA-DR3

CD4+ T cell

Aortic lumen

Aortic wall

Retroperitoneum
ARCHITECTURAL ORGANISATION OF THE LYMPHOCYTE SUBSETS

IMMUNOPATHOGENESIS OF CHRONIC PERIAORTITIS

Environmental factors (asbestos, smoking)

(Auto-)antigen (?)

HLA-DR3

TCR

CD4+ T cell

Aortic lumen

Aortic wall

Retroperitoneum
IMMUNOPATHOGENESIS OF CHRONIC PERIAORTITIS

(Auto-)antigen (?)

Environmental factors (asbestos, smoking)

HLA-DR3

CD4+ T cell

CD20+ B cells

IL-6

Aortic lumen

Aortic wall

Retroperitoneum
INTERLEUKIN-6 IN CP

p<0.0001

CP PATHOGENESIS: EOSINOPHILS, MAST CELLS AND EOTAXIN-1

Eosinophils

Tryptase+ degranulating mast cells

Eotaxin/CCL11 expression in retroperitoneal biopsies

Mangieri D, *Nephrol Dial Transplant* 2012
IMMUNOPATHOGENESIS OF CHRONIC PERIAORTITIS

Environmental factors (asbestos, smoking)

(Auto-)antigen (?)

Aortic lumen

Aortic wall

CD4+ T cell

CD20+ B cells

HLA-DR3

TCR

IL-6

Eotaxin-1

Eosinophils

Mast cells

Fibroblasts

Tryptase, eosinophil granule proteins

IL-6

Trypan blue

IMMUNOPATHOGENESIS OF CHRONIC PERIAORTITIS

Environmental factors (asbestos, smoking)

(Auto-)antigen (?)

Aortic lumen

Aortic wall

CD4+ T cell

CD20+ B cells

HLA-DR3

TCR

IL-6

Eotaxin-1

Eosinophils

Mast cells

Fibroblasts

Tryptase, eosinophil granule proteins

IL-6

Trypan blue

IMMUNOPATHOGENESIS OF CHRONIC PERIAORTITIS
IMMUNOPATHOGENESIS OF CHRONIC PERIAORTITIS

Environmental factors (asbestos, smoking)

(Auto-)antigen (?)

HLA-DR3

TCR

CD4+ T cell

CD20+ B cells

IL-6

Eotaxin-1

eosinophils

mast cells

IL-6

Tryptase, eosinophil granule proteins

fibroblasts

fibrocytes

Aortic lumen

Aortic wall
Fibrocytes are a rare population of (circulating) precursors of tissue fibroblasts, which stain positive for CD45 and type I Col.
IMMUNOPATHOGENESIS OF CHRONIC PERIAORTITIS

Adapted from Vaglio A, J Am Soc Nephrol 2016
Treatment and outcome
GLUCOCORTICOIDS AS FIRST-LINE THERAPY

39 started induction therapy with prednisone (1 mg/kg daily for 1 month)
2 excluded because of severe steroid-related toxic effects
1 declined further participation

36 achieved remission and randomised

18 assigned to prednisone
18 included in primary endpoint analysis (month 8)
1 lost to follow-up
17 completed the additional 18-month follow-up period

18 assigned to tamoxifen
18 included in primary endpoint analysis (month 8)
2 lost to follow-up
16 completed the additional 18-month follow-up period

GLUCOCORTICOIDS AS FIRST-LINE THERAPY

Log-rank test p=0.04

Number at risk

<table>
<thead>
<tr>
<th></th>
<th>Prednisone</th>
<th>Month since randomisation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>18</td>
<td>17</td>
</tr>
<tr>
<td>Tamoxifen</td>
<td>18</td>
<td>15</td>
</tr>
</tbody>
</table>
16 consecutive *relapsing* CP patients

MTX (15-20 mg/week) + PDN for 12 months (followed by observation or treatment continuation)

RITUXIMAB FOR RELAPSING-REFRACTORY DISEASE

Before Rituximab

After Rituximab
RITUXIMAB FOR CP

- 16 patients with difficult-to-treat CP
 - 12 relapsing-refractory
 - 4 contraindications to standard-dose GCs
- 14/16 had normal serum IgG4
- No one had evidence of (systemic) IgG4RD

Urban ML, 54th ERA-EDTA congress Madrid 2017 (abstract)
Before and after Tocilizumab

Vaglio A, Arthritis Rheum 2013
18F-FDG PET PREDICTS RESPONSE TO THERAPY IN CP

Accorsi Buttini E, *Eur Urol* 2017
Accorsi Buttini E, et al, unpublished
ACKNOWLEDGMENTS

Nephrology, Parma University Hospital
Maria Letizia Urban
Alessandra Palmisano
Federica Maritati
Federico Alberici
Giovanni M Rossi
Eugenia Accorsi Buttini
Maria Nicastro
Davide Gianfreda
Lucio Manenti

Pathology, Parma University Hospital
Domenico Corradi

Genetics, Parma University Hospital
Davide Martorana
Francesco Bonatti
Alessia Adorni

Urology, Parma University Hospital
Stefania Ferretti

Endocrinology, Parma University Hospital
Graziano Ceresini

Occupational Medicine, Parma University Hospital
Silvia Bonini
Matteo Goldoni

Nuclear Medicine, Reggio Emilia Hospital
Annibale Versari

Rheumatology, Reggio Emilia Hospital
Carlo Salvarani
Nicolò Pipitone

Nephrology, Policlinico Hospital, Milano
Gabriaella Moroni

Internal Medicine, University of Firenze
Giacomo Emmi

CSIC, Granada, Spain
Javier Martin